

Perfect Secrecy and One-Time Pads

CS/ECE 407

Today's objectives

Learn basic cryptographic vocabulary

Explain one-time pad encryption

Define perfect secrecy

Describe limitations of perfect secrecy

Course Structure

Symmetric key cryptography

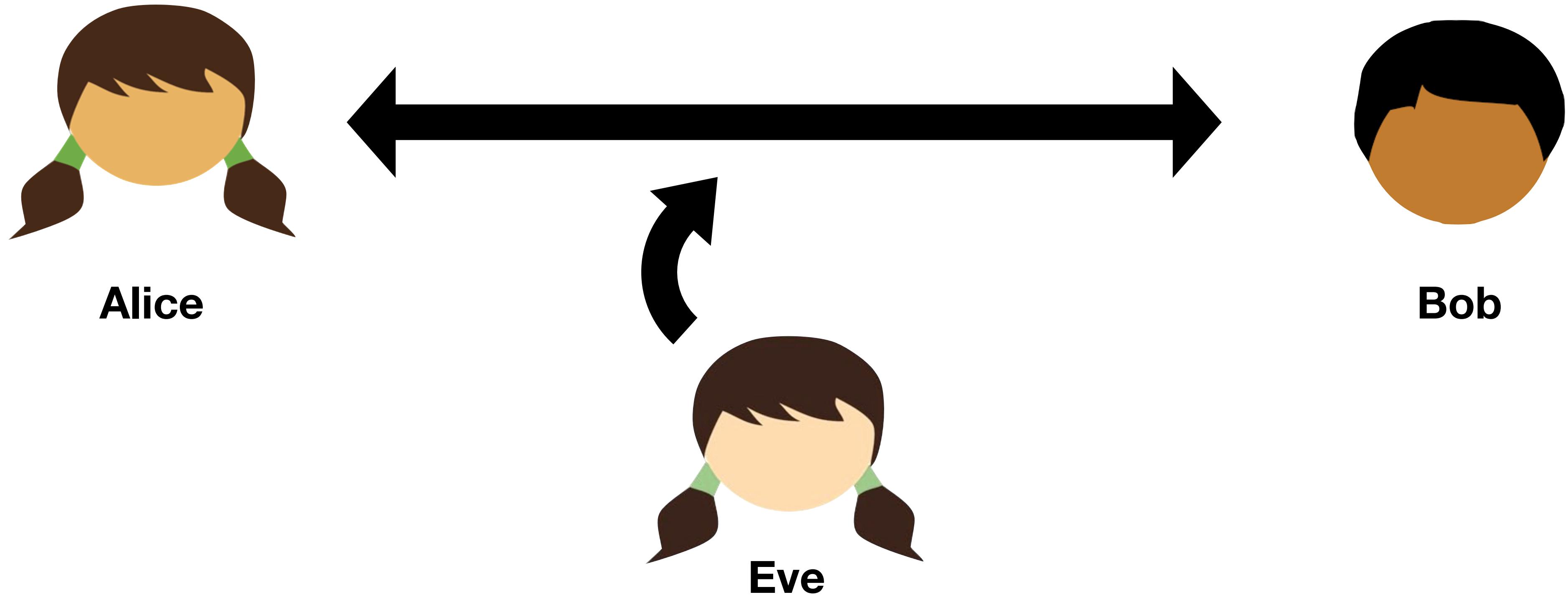
(Alice and Bob have a common key)

Public Key Cryptography

(Alice and Bob *do not* have a common key)

Beyond Secure communication

(Alice does not fully trust Bob)



Confidentiality

Can Alice and Bob prevent Eve from listening?

Substitution Cipher

a → J
b → Y
c → Z
d → K
e → C
f → I
...

cryptographyiscool

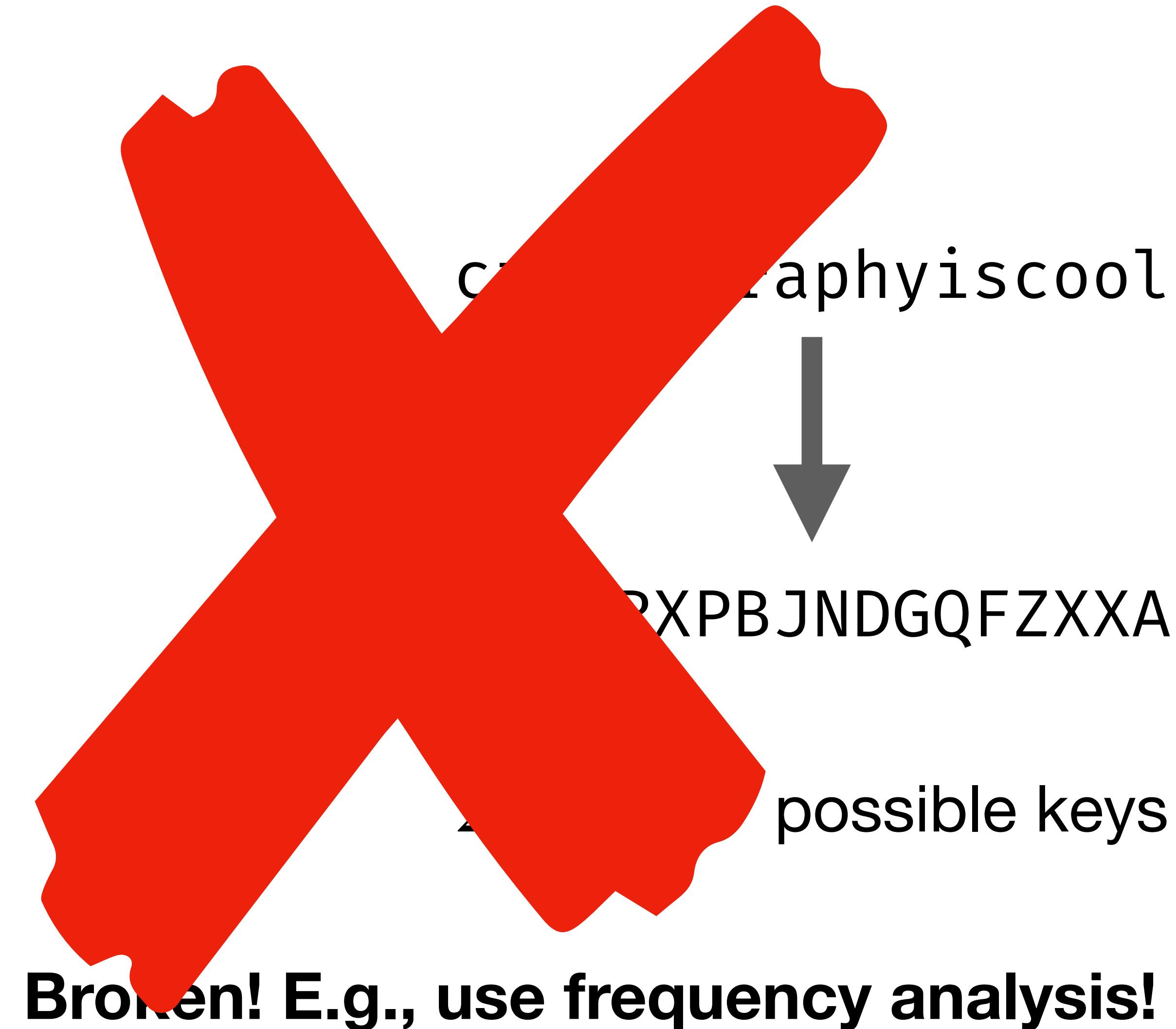
ZBGNRXPBJNDGQFZXXA

$26! \approx 2^{72}$ possible keys

Broken! E.g., use frequency analysis!

Substitution Cipher

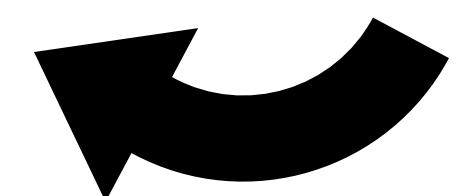
a → J
b → Y
c → Z
d → K
e → C
f → I
...



Modern Cryptography

State assumptions

Today: Understand why this is needed



Define security

Design system

Prove: if assumption holds, system meets definition

(Discrete) Probability Distribution

A discrete probability distribution is a map

$$X : S \rightarrow [0,1]$$

from a set of outcomes S to the probability that each outcome occurs, such that the image of X sums to 1

$$\text{fair coin} = \begin{cases} \text{heads} \mapsto \frac{1}{2} \\ \text{tails} \mapsto \frac{1}{2} \end{cases}$$

Notation:

$x \leftarrow_{\$} X$ or $x \leftarrow X$

Sample x from distribution X

(Discrete) Uniform Distribution

The **discrete uniform distribution** over a finite set S

sends each element of S to probability $\frac{1}{|S|}$

$$\text{uniform coin pair} = \begin{cases} \text{HH} \mapsto \frac{1}{4} \\ \text{HT} \mapsto \frac{1}{4} \\ \text{TH} \mapsto \frac{1}{4} \\ \text{TT} \mapsto \frac{1}{4} \end{cases}$$

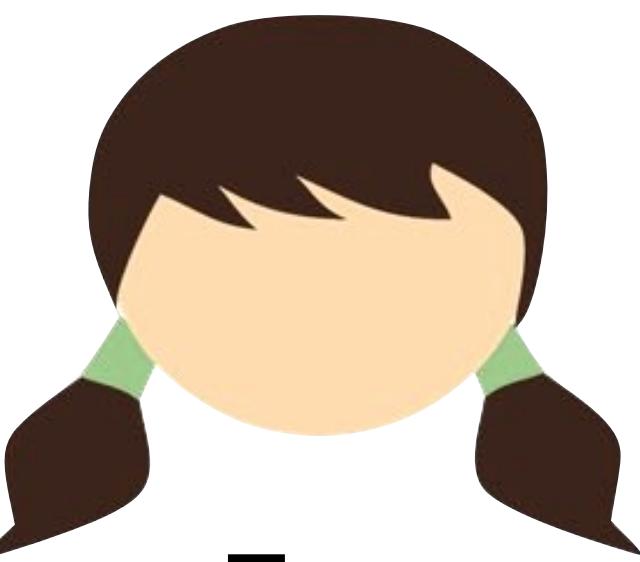
Notation:

$x \leftarrow_{\$} S$ or $x \leftarrow S$

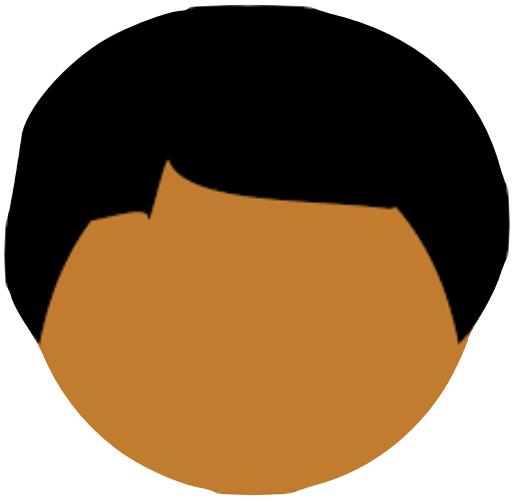
Sample x from uniform distribution over S

Alice

$$m \in \{0,1\}$$



Eve



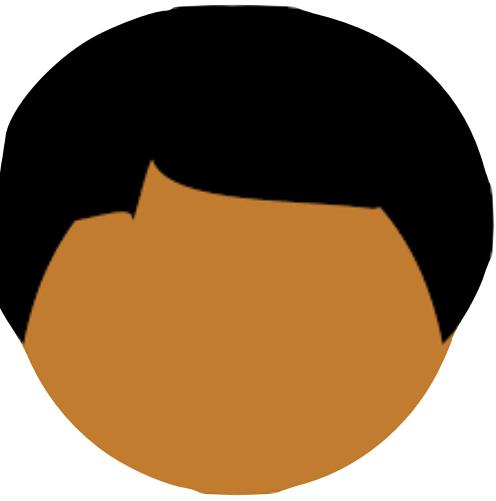
Bob

Alice

$$m \in \{0,1\}$$

$$k$$

$$k \leftarrow_{\$} \{0,1\}$$



Bob

Eve

$$k$$

Alice

$$m \in \{0,1\}$$

$$k$$

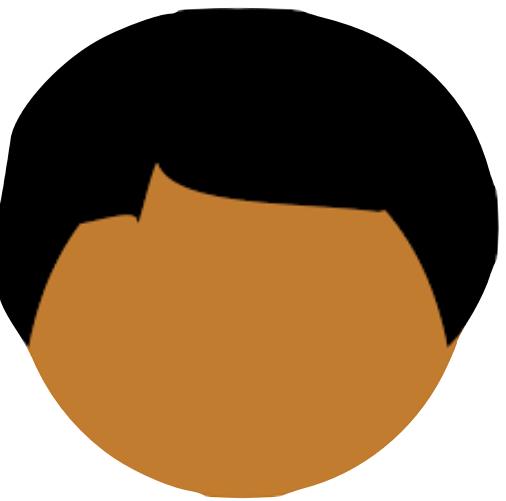
$$ct = m \oplus k$$

$$k \leftarrow_{\$} \{0,1\}$$

$$ct$$



Eve



Bob

$$k$$

\oplus	0	1
0	0	1
1	1	0

Alice

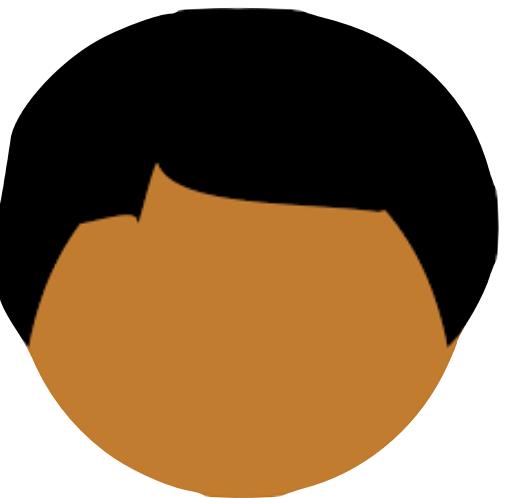
$$m \in \{0,1\}$$

$$k$$

$$ct = m \oplus k$$

$$k \leftarrow_{\$} \{0,1\}$$

$$ct$$



Bob

Eve

$$k$$

$$m' = ct \oplus k$$

\oplus	0	1
0	0	1
1	1	0



Alice

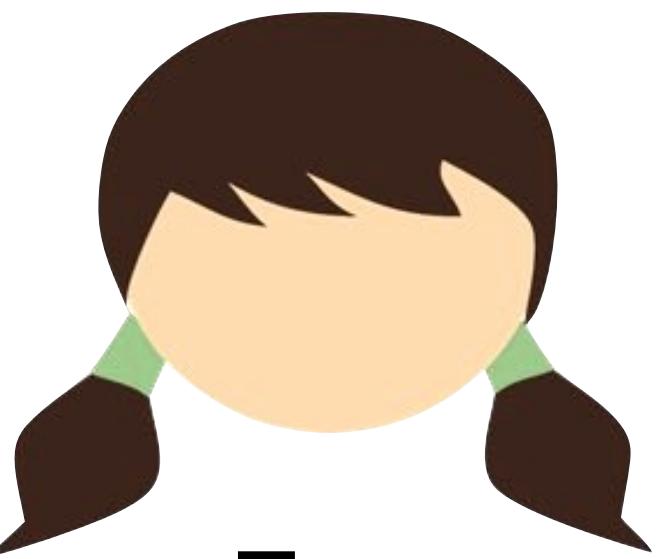
$$m \in \{0,1\}$$

$$k$$

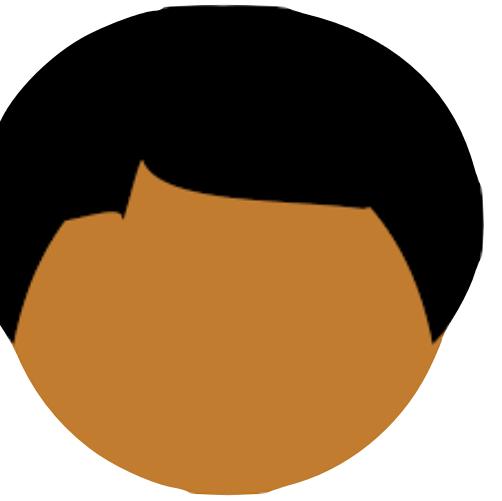
$$ct = m \oplus k$$

$$k \leftarrow_{\$} \{0,1\}$$

$$ct$$



Eve



Bob

$$k$$

$$m' = ct \oplus k$$

What are we *not* hiding?

Alice

$$m \in \{0,1\}$$

$$k$$

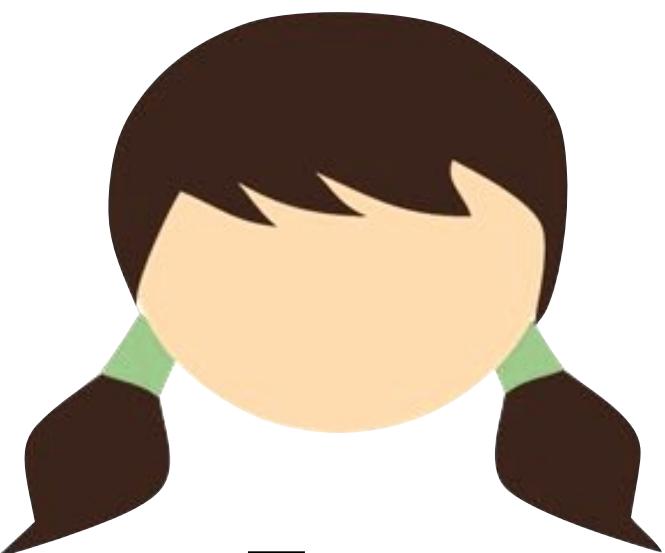
$$ct = m \oplus k$$

What are we *not* hiding?

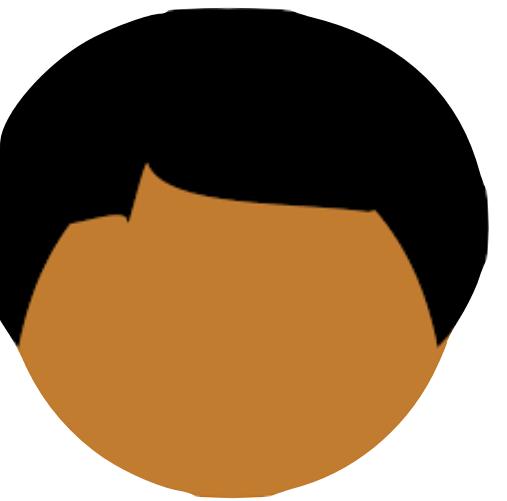
We do not hide that a message exists

$$k \leftarrow_{\$} \{0,1\}$$

$$ct$$



Eve



Bob

$$k$$

$$m' = ct \oplus k$$

*We are cryptographers,
not steganographers*

Alice

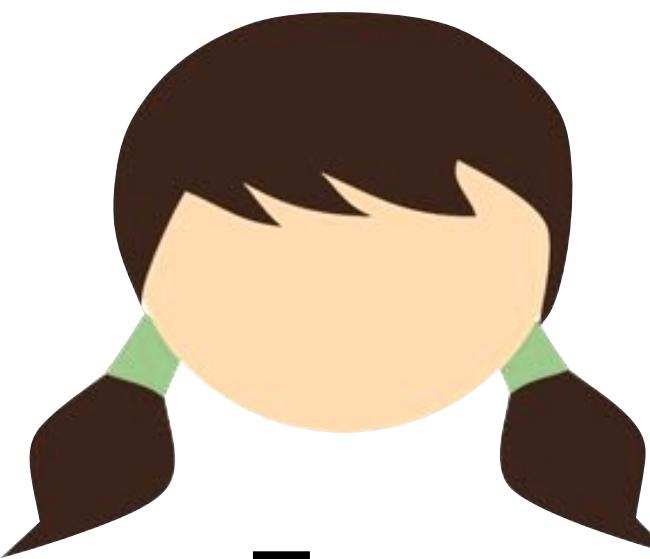
$$m \in \{0,1\}$$

$$k$$

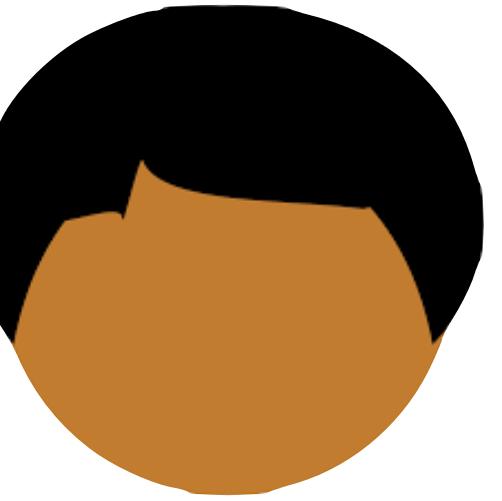
$$ct = m \oplus k$$

$$k \leftarrow_{\$} \{0,1\}$$

$$ct$$



Eve



Bob

$$k$$

$$m' = ct \oplus k$$

What are we *not* hiding?

We do not hide that a message *exists*

We do not hide *message length*

We do not hide *the protocol*

*We are cryptographers,
not steganographers*

Kerckhoffs's principle

Kerckhoffs's Principle

Security Through Obscurity – Conceal details of the system in the hopes that it will protect you

Kerckhoff's Principle: “[A cipher's design] should not require secrecy, and it should not be a problem be a problem if it falls into enemy hands.”

Claude Shannon's phrasing: “The enemy knows the system.”

Modern Cryptography

State assumptions

Define security

Design system

Prove: if assumption holds, system meets definition

Symmetric Cipher

A **cipher** over (K, M, C) is two *algorithms*:

$$Enc : K \times M \rightarrow C$$

$$Dec : K \times C \rightarrow M$$

Symmetric Cipher

A **cipher** over (K, M, C) is two *algorithms*:

$$Enc : K \times M \rightarrow C$$

Enc can be probabilistic

$$Dec : K \times C \rightarrow M$$

Dec is deterministic

Symmetric Cipher

A **cipher** over (K, M, C) is two *algorithms*:

$$Enc : K \times M \rightarrow C$$

$$Enc(k, m) := k \oplus m$$

$$Dec : K \times C \rightarrow M$$

$$Dec(k, ct) := k \oplus ct$$

Symmetric Cipher

A **cipher** over (K, M, C) is two *algorithms*:

$$Enc : K \times M \rightarrow C$$

$$Enc(k, m) := k \oplus m$$

$$Dec : K \times C \rightarrow M$$

$$Dec(k, ct) := k \oplus ct$$

Correctness:

Symmetric Cipher

A **cipher** over (K, M, C) is two *algorithms*:

$$Enc : K \times M \rightarrow C$$

$$Enc(k, m) := k \oplus m$$

$$Dec : K \times C \rightarrow M$$

$$Dec(k, ct) := k \oplus ct$$

Correctness:

For every message $m \in M$:

$$\Pr \left[Dec(k, c) = m \mid \begin{array}{l} k \leftarrow_{\$} K \\ c \leftarrow Enc(k, m) \end{array} \right] = 1$$

Symmetric Cipher

A **cipher** over (K, M, C) is two *algorithms*:

$$Enc : K \times M \rightarrow C$$

$$Enc(k, m) := k \oplus m$$

$$Dec : K \times C \rightarrow M$$

$$Dec(k, ct) := k \oplus ct$$

Correctness:

For every message $m \in M$:

$$\Pr \left[Dec(k, c) = m \mid \begin{array}{l} k \leftarrow_{\$} K \\ c \leftarrow Enc(k, m) \end{array} \right] = 1 \quad k \oplus (k \oplus m) = m \quad \checkmark$$

Symmetric Cipher

A **cipher** over (K, M, C) is two *algorithms*:

$$Enc : K \times M \rightarrow C$$

$$Enc(k, m) := k \oplus m$$

$$Dec : K \times C \rightarrow M$$

$$Dec(k, ct) := k \oplus ct$$

Correctness:

For every message $m \in M$:

$$\Pr \left[Dec(k, c) = m \mid \begin{array}{l} k \leftarrow_{\$} K \\ c \leftarrow Enc(k, m) \end{array} \right] = 1 \quad k \oplus (k \oplus m) = m \quad \checkmark$$

Confidentiality:

Symmetric Cipher

A **cipher** over (K, M, C) is two *algorithms*:

$$Enc : K \times M \rightarrow C$$

$$Enc(k, m) := k \oplus m$$

$$Dec : K \times C \rightarrow M$$

$$Dec(k, ct) := k \oplus ct$$

Correctness:

For every message $m \in M$:

$$\Pr \left[Dec(k, c) = m \mid \begin{array}{l} k \leftarrow_{\$} K \\ c \leftarrow Enc(k, m) \end{array} \right] = 1 \quad k \oplus (k \oplus m) = m \quad \checkmark$$

Perfect Secrecy:

Symmetric Cipher

A **cipher** over (K, M, C) is two *algorithms*:

$$Enc : K \times M \rightarrow C$$

$$Enc(k, m) := k \oplus m$$

$$Dec : K \times C \rightarrow M$$

$$Dec(k, ct) := k \oplus ct$$

Correctness:

$$\Pr \left[Dec(k, c) = m \mid \begin{array}{l} k \leftarrow_{\$} K \\ c \leftarrow Enc(k, m) \end{array} \right] = 1 \quad k \oplus (k \oplus m) = m \quad \checkmark$$

Perfect Secrecy:

For every message $m \in M$:

$$\left\{ c \mid \begin{array}{l} k \leftarrow_{\$} K \\ c = Enc(k, m) \end{array} \right\} \equiv \left\{ c \mid c \leftarrow_{\$} C \right\}$$

Symmetric Cipher

A **cipher** over (K, M, C) is two *algorithms*:

$$Enc : K \times M \rightarrow C$$

$$Enc(k, m) := k \oplus m$$

$$Dec : K \times C \rightarrow M$$

$$Dec(k, ct) := k \oplus ct$$

Correctness:

$$\Pr \left[Dec(k, c) = m \mid \begin{array}{l} k \leftarrow_{\$} K \\ c \leftarrow Enc(k, m) \end{array} \right] = 1 \quad k \oplus (k \oplus m) = m \quad \checkmark$$

Perfect Secrecy:

For every message $m \in M$:

$$\left\{ c \mid \begin{array}{l} k \leftarrow_{\$} K \\ c = Enc(k, m) \end{array} \right\} \equiv \left\{ c \mid c \leftarrow_{\$} C \right\} \quad \checkmark$$

Alice

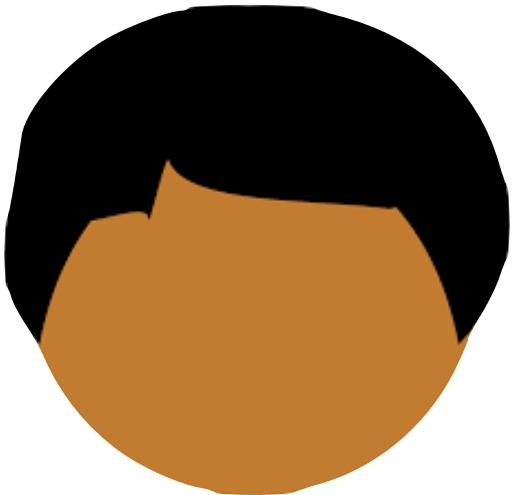
$$m \in \{0,1\}$$

$$k \leftarrow_{\$} \{0,1\}$$

$$ct \leftarrow m \oplus k$$

$$k \leftarrow_{\$} \{0,1\}$$

$$ct$$



Bob

Eve

$$k \leftarrow_{\$} \{0,1\}$$

$$m' \leftarrow ct \oplus k$$

Question: what if Alice wants to send more than one bit?

Alice

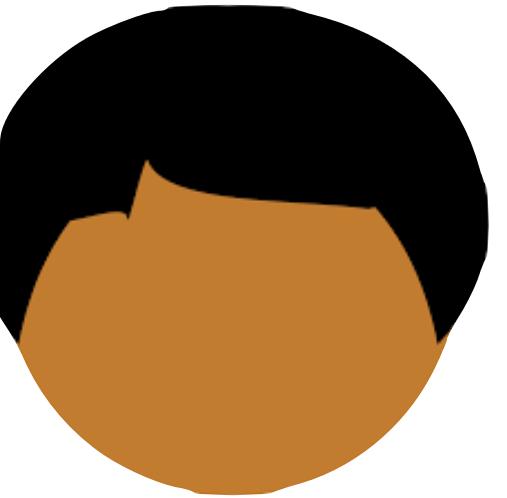
$$m \in \{0,1\}^2$$

$$k \leftarrow_{\$} \{0,1\}$$

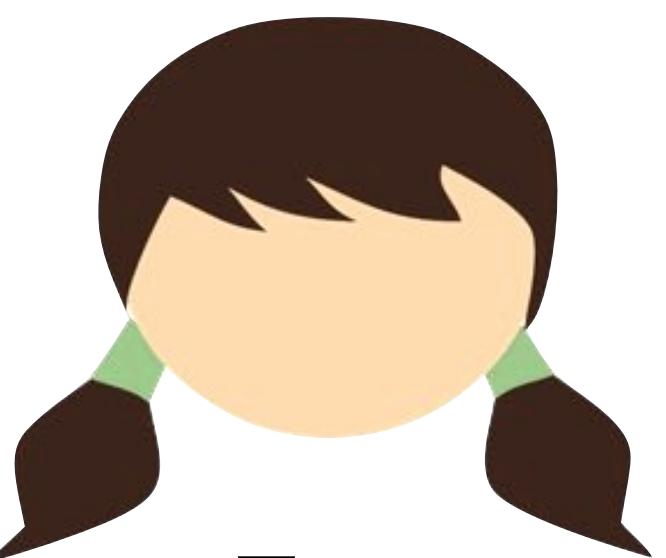
$$ct \leftarrow m \oplus k$$

$$k \leftarrow_{\$} \{0,1\}$$

ct



Bob



Eve

$$k \leftarrow_{\$} \{0,1\}$$

$$m' \leftarrow ct \oplus k$$

Alice

$$m \in \{0,1\}^2$$

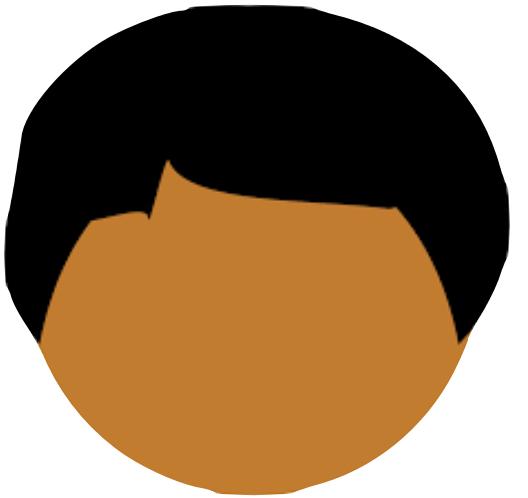
$$k \leftarrow_{\$} \{0,1\}$$

$$ct \leftarrow m \oplus k$$

$$k \leftarrow_{\$} \{0,1\}$$

ct

Eve



Bob

$$k \leftarrow_{\$} \{0,1\}$$

$$m' \leftarrow ct \oplus k$$

Key k is a one-time pad

Perfect Secrecy:

For every message $m \in M$, the following are identically distributed:

$$\left\{ c \mid \begin{array}{l} k \leftarrow_{\$} K \\ c = Enc(k, m) \end{array} \right\} \equiv \left\{ c \mid c \leftarrow_{\$} C \right\}$$

Theorem [Shannon 1949]: Any cipher achieving perfect secrecy requires that $|K| \geq |M|$.

Bad News! We will need another approach!

Perfect Secrecy:

For every message $m \in M$, the following are identically distributed:

$$\left\{ c \mid \begin{array}{l} k \leftarrow_{\$} K \\ c = Enc(k, m) \end{array} \right\} \equiv \left\{ c \mid c \leftarrow_{\$} C \right\}$$

Theorem [Shannon 1949]: Any cipher achieving perfect secrecy requires that $|K| \geq |M|$.

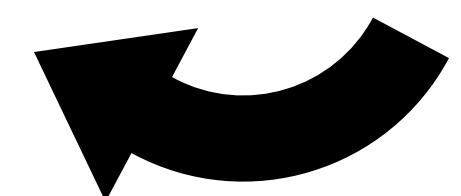
Bad News! We will need another approach!

Key idea: what if we can make something that *looks* random, but actually isn't

Modern Cryptography

State assumptions

Today: Understand why this is needed



Define security

Design system

Prove: if assumption holds, system meets definition

Today's objectives

Learn basic cryptographic vocabulary

Explain one-time pad encryption

Define perfect secrecy

Describe limitations of perfect secrecy