Perfect Secrecy
and One-Time Pads

CS/ECE 407




Today’s objectives

Learn basic cryptographic vocabulary
Explain one-time pad encryption
Define perfect secrecy

Describe limitations of perfect secrecy



Course Structure

Symmetric key cryptography
(Alice and Bob have a common key)

Public Key Cryptography
(Alice and Bob do not have a common key)

Beyond Secure communication
(Alice does not fully trust Bob)



Confidentiality
Can Alice and Bob prevent Eve from listening?
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Modern Cryptography

State assumptions Today: Understand why this is needed

Vo

Define security
Design system

Prove: If assumption holds, system meets definition



(Discrete) Probability Distribution

A discrete probability distribution is a map

X:85 - ]0,1]

from a set of outcomes § to the probability that each
outcome occurs, such that the image of X sums to 1

1 Notation:

heads — >
fair coin = | | X g or x <X
tails — 5 Sample x from distribution X



(Discrete) Uniform Distribution

The discrete uniform distribution over a finite set S

1
sends each element of S to probability m
HH — ~
A
HT — %
uniform coin pair = |
1 Notation:
TH — —
A
| X <—$ Sorx<« S
11T — " Sample x from uniform

distribution over S
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What are we not hiding?

We do not hide that a message exists

We do not hide message length
We do not hide the protocol Kerckhoffs's principle



Kerckhoffs's Principle

Security Through Obscurity — Conceal details of the system in
the hopes that it will protect you

Kerckhoff’s Principle: “[A cipher’s design] should not require
secrecy, and it should not be a problem be a problem if it falls into
enemy hands.”

Claude Shannon’s phrasing: “The enemy knows the system.”
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Symmetric Cipher

A cipher over (K, M, C) is two algorithms:

Enc: KxM — C
Dec: KxXC - M



Symmetric Cipher

A cipher over (K, M, C) is two algorithms:

Enc: KxM — C Enc can be probabilistic
Dec : KxC—->M Dec is deterministic
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Question: what if Alice wants
to send more than one bit?
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Key Kk is a one-time pad



Perfect Secrecy:
For every message m € M, the following are identically distributed:

{C IZ:$Efc(k,m)}E{c ‘ C(_$C}

Theorem [Shannon 1949]: Any cipher achieving
perfect secrecy requires that | K| > | M].

Bad News! We will need another approach!



Perfect Secrecy:
For every message m € M, the following are identically distributed:

{C ﬁzzfc(k,m)}z{c ‘ C<_$C}

Theorem [Shannon 1949]: Any cipher achieving
perfect secrecy requires that | K| > | M].

Bad News! We will need another approach!

Key idea: what it we can make something
that /looks random, but actually isn’t



Modern Cryptography

State assumptions Today: Understand why this is needed

Vo

Define security
Design system

Prove: If assumption holds, system meets definition



Today’s objectives

Learn basic cryptographic vocabulary
Explain one-time pad encryption
Define perfect secrecy

Describe limitations of perfect secrecy



